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Abstract

Using Van Kampen’s normal mode expansion, we solve the initial value problem for a high-gain free-electron laser
described by the three-dimensional Maxwell–Klimontovich equations. An expression of the radiation spectrum is given
for the process of coherent amplification and self-amplified spontaneous emission. It is noted that the input coupling

coefficient for either process increases with the initial beam energy spread. The effective start-up noise is identified as the
coherent fraction of the spontaneous undulator radiation in one field gain length, and is larger with increasing energy
spread and emittance mainly because of the increase in gain length. r 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a high-gain free-electron laser (FEL), a
coherent external signal or the incoherent undu-
lator radiation can initiate the FEL interaction for
an exponentially growing coherent radiation. Such
a radiation is a promising source for future-
generation X-ray facilities. Thus, it is important
to understand how the exponential process starts
and how the incoherent radiation develops into a
coherent source.

The FEL initial value problem was solved in
one-dimensional (1-D) theory [1,2] using the La-

place transform technique. The three-dimensional
(3-D) initial value problem for a parallel beam was
studied by Van Kampen’s method in Ref. [3] and
by a Green’s function technique in Refs. [4,5].
Extension of Van Kampen’s method to include the
emittance effect was made in Refs. [6,7]. Using an
equivalent method, Xie [8] independently obtained
the solution to the initial value problem including
emittance and numerically found that the effective
start-up noise in self-amplified spontaneous emis-
sion (SASE) becomes significantly larger with
finite emittance and energy spread.

Inspired by the work of Xie, we explain the
solution to the FEL initial value problem using
Van Kampen’s method applicable to the 3-D case
including betatron focusing and emittance. We
then attempt to provide an understanding of the
dependence of the effective start-up noise on beam
parameters. Two factors determining the start-up
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process are identified. The input coupling coeffi-
cient for both coherent amplification (CA) and
SASE is found to increase with the initial energy
spread. The effective start-up noise is shown to be
the coherent fraction of the spontaneous undula-
tor radiation in the first field gain length, general-
izing the result of Ref. [5] for a beam with
vanishing energy spread and emittance. The
effective start-up noise appears to be larger with
increasing energy spread and emittance mainly
because of the increase of the gain length.
Fluctuation in initial electron velocities (due to
beam energy spread and angular spread) do not
seem to contribute to any additional start-up
noise.

2. The dynamic equations and the initial conditions

We follow closely to the notations of Ref. [7],
which makes extensively use of the FEL parameter
r [9] to scale all the dynamical variables. Assuming
that the initial smooth electron distribution f0 is
matched to the undulator channel transversely and
has a uniform longitudinal profile, the Maxwell–
Klimontovich equations in the small signal regime
can be written as [7]
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Here the scaled undulator distance %z is the
independent ‘‘time’’ variable, an and fn are the
nth fourier component of the scaled electric field

and the perturbed electron distribution function
f1, respectively, (y; %Z; %x; %p) are the longitudinal and
the transverse phase space variables, %=> ¼ @=ð@ %xÞ
is the scaled transverse Laplacian, %n ¼ ðn� 1Þ=
ð2rÞ; %k is the scaled natural focusing strength, and
%kb is the total scaled focusing strength (including
the natural focusing and the average effects of the
external focusing).

The evolution of the radiation field and the
distribution function in the start-up and the
exponential growth regimes is completely deter-
mined by Eq. (1) and the initial value Fð0Þ of the
state vector. The latter is specified by the external
signal anð0Þ and the shot noise fnð0Þ ¼

R
ð2r dy=

2pÞe�inyf1ð0Þ: Although the ensemble average of
fnð0Þ is zero, physically meaningful quantities such
as intensity can be computed by using the relation
[10] (see also Ichimaru [10]):

/fnð%Z; %x; %p; 0Þfnð%Z0; %x0; %p0; 0ÞS

¼
2k2
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Here l1 ¼ 2p=k1 is the resonant radiation wave-
length, lu ¼ 2p=ku is the undulator period, n0 is
the peak electron volume density, and yb is the
bunch length in units of 2p=l1:

3. Van Kampen’s normal mode expansion

The initial value problem formulated in the
previous section can be solved by expanding the
solution in terms of the eigenvectors of Eq. (1).
The coefficients of the expansion are determined
from the initial conditions if the eigenvectors are
mutually orthogonal under a suitably defined
scalar product. The procedure is well-known in
quantum mechanics in which all operators are
Hermitian. Here M is not a Hermitian operator,
and we employ the extension of the method
developed by Van Kampen [11] in studying the
1-D plasma waves.

Let us first find the eigenvalues and the
eigenvectors of Eq. (1), defined to be solutions

e�imn %zCn ¼ e�imn %z
Anð %xÞ

Fnð%Z; %x; %pÞ
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: ð5Þ
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Solving the eigenvalue equation ðmn þMÞCn ¼ 0;
we obtain the mode equation
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Eq. (6) is the dispersion relation derived in Refs.
[3,12] for natural focusing only (i.e., %kb ¼ %k). For
alternating-gradient focusing with %kbb %k; it is
shown to be also valid after averaging properly
over many periods of the focusing structure
[13,14]. It can be solved using a variational
principle [12,15] and a matrix formalism [15]. In
general, a discrete set of eigenvalues and eigen-
modes exists.

Van Kampen orthogonality of these eigenvec-
tors is constructed by introducing the adjoint
eigenvalue equation ð *mn þ *MÞ *Cn ¼ 0; where *mn

and *Cn are the adjoint eigenvalues and eigenvec-
tors of the adjoint operator *M: The formal
procedure can be found in Ref. [7]. In the high-
gain regime where the fundamental mode A0ð %xÞ
dominates because its eigenvalue m0 has the largest
imaginary part mI; we project the initial conditions
to this mode "a la Van Kampen and obtain the
evolution of the electric field
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These expressions have been obtained indepen-
dently by Xie [8] using an equivalent method. The
first term in the square bracket of Eq. (8) describes
the process of coherent amplification, which starts
from an external signal anð0Þ: The second term
describes the process of self-amplified spontaneous
emission, which starts from white noise. Eq. (8) for
the parallel e-beam (with vanishing emittance)
reduces to those of Refs. [3,4]. The ensemble
averaged spectrum of the radiation intensity
(power per unit area) can be computed with the
help of Eq. (4):
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where Ibeam ¼ g0mc3n0; and g0mc2 is the beam
energy.

4. Effects of energy spread

To isolate the energy spread effects in the FEL
start-up process, we look at the 1-D limit of
the above results by setting Anð %xÞ ¼ 1;

R
d2 %x ¼

2k1kurS (S is the beam cross-section) and drop-
ping

R
d2 %p and the transverse Laplacian. The mode

Eq. (6) reduces to the 1-D dispersion relation [1]:

DðmÞ ¼ m� %n�
Z

d%Z
dV=d%Z
%Z� m

¼ 0 ð11Þ

where f0 ¼ Vð%ZÞ with
R
d%ZVð%ZÞ ¼ 1: For a mono-

energetic beam (i.e., Vð%ZÞ ¼ dð%ZÞ), this reduces to
the cubic equation [9] with a growing, a decaying
and an oscillatory solution. The intensity spectrum
of Eq. (10) becomes the power spectrum of
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Ref. [1]:
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Here Pbeam ¼ IbeamS is the beam power, and m ¼
mR þ imI is a function of the frequency detuning %n
through the dispersion relation. For CA, the
amplification occurs at the frequency defined by
the frequency of the coherent source. For SASE,
the frequency dependence is determined by mIð%nÞ in
the exponent of Eq. (12). Thus, gA and gS;
evaluated at the optimal detuning %n0 where the
growth rate mI reaches the maximum, determine
the input coupling to the exponentially growing
mode and the effective start-up noise in units of
rg0mc2=ð2pÞ; respectively.

In Ref. [1], G ¼ gAgS has been computed
numerically for a flat-top energy distribution and
has been found to increase initially with energy
spread. For a Gaussian energy distribution

Vð%ZÞ ¼
1ffiffiffiffiffiffi
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we compute mI; gA and gS as functions of the r.m.s
energy spread %sZ ¼ sg=ðg0rÞ (see Fig. 1) and
find that both gA and gS increase with %sZ: For
a monoenergetic beam, any initial signal (external
or spontaneous) couples equally well to the three
(growing, decaying and oscillatory) modes that
have the same normalization factor, hence we
have the well-known gA ¼ 1

9: However, gA is larger
for a larger energy spread, approaching 1

4 for
the flat-top model and 1 for the Gaussian model.
We note that the increase of the input coupling
coefficient gA is the same for both CA and

SASE, and a plausible explanation may be
made [16] as follows: an electron beam with
larger energy spread is less sensitive to the
detuning effect due to the deceleration of the
electrons caused by the FEL interaction. Thus, it
can couple more effectively with the exponentially
growing radiation.

The increase in the effective start-up noise
through gS may be interpreted in the following
way. First of all, gS ¼ 1 for a monoenergetic beam,
and the quantity rg0mc2=ð2pÞ is approximately the
spontaneous undulator radiation in the first field
gain length Lg0 ¼ 1=ðkur

ffiffiffi
3

p
Þ [5]. For a beam with

a finite energy spread, the spontaneous radiation
spectrum in the forward direction is the convolu-
tion of the beam energy spectrum and the
undulator radiation spectrum with an intrinsic
bandwidth 2DZ ¼ Dn ¼ Do=oB2p=ðkuzÞ: After
the first field gain length z ¼ Lg ¼ ð2kurmIÞ

�1; the
spontaneous radiation spectrum becomes
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where SuðxÞ ¼ sin2ðxÞ=x2 is the undulator spectral
function [18]. Rewriting Eq. (13) as
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Fig. 1. The behavior of mI; gA and gS as functions of the r.m.s.

energy spread %sZ ¼ sZ=r for a Gaussian energy distribution.
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and comparing with Eq. (15), we may interpret the
effective start-up noise as the fraction of the
spontaneous undulator radiation in the first field
gain length within the coherent gain bandwidth D%ZB
D%nBmI (much narrower than the intrinsic undulator
bandwidth 2pmI). Using the Gaussian energy dis-
tribution in Eq. (14) and approximating the Lor-
entzian in the square bracket of Eq. (16) by another
Gaussian, we can carry out the %Z-integral to obtain
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exp �
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2
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ð17Þ

With increasing energy spread, the coherent
fraction of the spontaneous radiation decrea-
ses, but the drop in the growth rate significantly
increases the spontaneous radiation power in one
field gain length, leading to the overall increase of
the effective start-up noise through gS (as seen in
Fig. 1). In fact, for large values of the energy
spread %s2Zb1; mRE%n0E� %sZ and mIE0:76= %s2Z [17],
so that ðdP=doÞSp %sZ increases without bound
because the noise required to start the SASE
process is infinite.

5. Effects of emittance

We now return to the full 3-D Eq. (10) and
consider SASE (the second term) only. Assuming
that the betatron oscillations are slow on the scale
of the gain length, we take %kbt51; %xbðtÞE %x0 and
integrate

R
dx2ðdI=doÞ to obtain the SASE power

spectrum
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Here g3DA ¼
R
d2 %xjA0ð %xÞj2=jC0j2 is the input cou-

pling coefficient. The effective start-up noise is
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where Uð%p2 þ %k
2

b %x
2Þ is the electron transverse

distribution function. Eq. (19) provides a similar
phase-space convolution as the spontaneous un-
dulator radiation when the effects of electron
angular spread is taken into account [18], except
that the spectral function is a Lorentzian instead of
the undulator spectrum Su at one field gain length.
Identifying mI as the bandwidth of %Z (or %n) as in
Section 4 and

ffiffiffiffiffi
mI

p
as the angular spread of the

fundamental mode (or Lg ¼ ð2kumIrÞ
�1 as the

Rayleigh length), we may interpret the effective
start-up noise as the phase-space convolution of
the spontaneous undulator radiation in the first
field gain length with the coherent fundamental
laser mode.

For numerical computation, we approximate
A0ð %xÞ ¼ expð�wj %xj2= %s2xÞ; where w ¼ wR þ wI is a
complex number characterizing the fundamental
radiation mode, and %sx is the scaled transverse e-
beam size and is related to the r.m.s. emittance
e ¼ %s2x %kb=k1: Eq. (18) can be written as
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For example, using the current design parameters of
the Linac Coherent Light Source (LCLS) [19], we
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have %sr ¼ 2:8; %sZ ¼ 0:45; and %kb ¼ 0:29: The
fundamental guided mode has a complex growth
rate m0 ¼ �1:2þ 0:42i and a mode profile deter-
mined by w ¼ 0:64� 0:50i at the optimal detuning

%n0 ¼ �1:0 [7]. Hence we obtain g3DA E0:3 and
g3DS E2:6; both larger than the values with vanishing
energy spread and emittance by a factor ofB3 each.

References

[1] K.-J. Kim, Nucl. Instr. and Meth. A 250 (1986) 396.

[2] J.-M. Wang, L.-H. Yu, Nucl. Instr. and Meth. A 250

(1986) 484.

[3] K.-J. Kim, Phys. Rev. Lett. 57 (1986) 1871.

[4] S. Krinsky, L.-H. Yu, Phys. Rev. A 35 (1987) 3406.

[5] L.-H. Yu, S. Krinsky, Nucl. Instr. and Meth. A 285

(1989) 119.

[6] K.-J. Kim, unpublished notes.

[7] Z. Huang, K.-J. Kim, Phys. Rev. E 62 (2000) 7259.

[8] M. Xie, presented at the American Physical Society April

Meeting, Long Beach, 2000; M. Xie, Nucl. Instr. and

Meth. A 475 (2001) 51, These Proceedings.

[9] R. Bonifacio, C. Pellegrini, L.M. Narducci, Opt. Commun.

50 (1984) 373.

[10] Y.L. Klimontovich, Sov. Phys. JETP 6 (1958) 753;

S. Ichimaru, Basic Principles of Plasma Physics, Benjamin,

London, 1973.

[11] N.G. Van Kampen, Physica (Utrecht) 21 (1951) 949;

K.M. Case, Ann. Phys. (NY) 7 (1959) 349.

[12] L.-H. Yu, S. Krinsky, R.L. Gluckstern, Phys. Rev. Lett. 64

(1990) 3011.

[13] S. Reiche, Nucl. Instr. and Meth. A 445 (2000) 90.

[14] E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl.

Instr. and Meth. A 475 (2001) 86, These Proceedings and

Ref. [20] therein.

[15] M. Xie, Nucl. Instr. and Meth. A 445 (2000) 59, 67.

[16] N.A. Vinokurov, private communication.

[17] E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, Nucl.

Instr. and Meth. A 313 (1992) 555; E.L. Saldin, E.A.

Schneidmiller, M.V. Yurkov, The Physics of Free Electron

Lasers, Springer, Berlin, 1999.

[18] K.-J. Kim, in: M. Month, M. Dienes (Eds.),

AIP Conference Proceedings 184, AIP, New York, 1989,

p. 585.

[19] Linac Coherent Light Source Design Study Report,

SLAC-R-521, 1998.

Z. Huang, K.-J. Kim / Nuclear Instruments and Methods in Physics Research A 475 (2001) 59–6464


